13C NMR RELAXATION AND MOLECULAR STRUCTURE. 13C SPIN–LATTICE RELAXATION AND ROTATIONS OF METHYL GROUPS IN N,N-DIMETHYLFORMAMIDE

Hiroshi NAKANISHI and Osamu YAMAMOTO
National Chemical Laboratory for Industry, 1-1-5, Honmachi, Shibuya-Ku, Tokyo 151, Japan

Received 19 February 1975
Revised manuscript received 29 April 1975

Rotational rates of the two methyl groups in N,N-dimethylformamide were calculated using Woessner's equation from 13C spin–lattice relaxation values at low temperatures. The rotation of the cis methyl group was found to be more hindered than that of the trans methyl group.

1. Introduction

The recent development of the pulsed Fourier transform method in nuclear magnetic resonance spectroscopy makes it possible to determine easily spin–lattice relaxation times (T₁) of naturally abundant carbon-13 nuclei in organic molecules. Study of spin–lattice relaxation times gives information about the tumbling motion and the internal rotation of the molecules. Since carbon atoms are more centrally situated than hydrogen atoms in most organic molecules, the experimentally obtained relaxation times of carbon-13 nuclei give more direct information about the molecular conformation than those of hydrogen which are considerably influenced by intermolecular hydrogen–hydrogen interactions.

To date, spin–lattice relaxation times of many compounds involving the methyl group have been studied [1–6]. The rotation of the methyl group, however, was discussed only qualitatively in these reports. A theoretical study of the nuclear spin–lattice relaxation in molecules with an internal motion has been made by Woessner et al. [7], who treated axially symmetric ellipsoid molecules. On the other hand, Wallach et al. [8] have studied the anisotropic molecular rotation in liquid N,N-dimethylformamide (DMF) by the nuclear magnetic resonance technique and have reported that in this molecule there takes place an approximately axially symmetric motion at low temperatures.

This report presents the results of the first quantitative study of fast internal rotations of methyl groups in DMF by carbon-13 spin–lattice relaxation techniques.

2. Experimental

DMF of commercial origin was distilled before use. 20 V% deuterochloroform was added for the deuterium lock. The sample was completely degassed with a high vacuum system and was sealed in a special 8 mm o.d. sample tube for the T₁ measurement. 13C NMR spectra were recorded on a NEVA NV-14 spectrometer operating at 15.087 MHz with a Varian 620/L computer for a pulsed FT mode. Spin–lattice relaxation times were determined by the usual 180°–τ–90° pulse sequence method. The pulse delay time was set at greater than five times the longest T₁ to be measured. 8–16 free induction decays were accumulated. The error range in the T₁ measurements was better than ±5%. The nuclear Overhauser enhancement factor (NOE) was determined by dividing the
Table 1

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>cis Me</th>
<th>trans Me</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.6</td>
<td>2.5</td>
<td>1.9</td>
<td>2.1</td>
</tr>
<tr>
<td>-33.1</td>
<td>3.0</td>
<td>2.9</td>
<td>2.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>cis Me</th>
<th>trans Me</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.6</td>
<td>2.5</td>
<td>1.9</td>
<td>2.1</td>
</tr>
<tr>
<td>-33.1</td>
<td>3.0</td>
<td>2.9</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>cis Me</th>
<th>trans Me</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.6</td>
<td>2.5</td>
<td>1.9</td>
<td>2.1</td>
</tr>
<tr>
<td>-33.1</td>
<td>3.0</td>
<td>2.9</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Fig. 1. Log T_1 versus $1/T$ plots of N,N-dimethylformamide.

integrated peak intensities in 1H decoupled ^{13}C spectra by the total integrated band intensities in non-decoupled ^{13}C spectra. In this case, the pulse interval was also longer than 5 T_1 for the slowest relaxing carbon. The accumulation was made 90 times for the decoupled spectra and 720 times for the non-decoupled spectra. The temperatures were determined by a calibrated copper-constantan thermocouple.

3. Results and discussion

The T_1 of the trans methyl carbon in DMF is known to be considerably longer than that of the cis methyl carbon at room temperature [6]: the T_1 values from our measurements are 17.1 s for trans methyl carbon and 11.4 s for cis methyl carbon at 31.0°C. In order to obtain the contribution of the spin–rotation mechanism to the methyl relaxation, the nuclear Overhauser enhancement factors were determined. The results are given in table 1. It was found that the contribution of the spin–rotation mechanism cannot be neglected at room temperature, especially in the trans methyl carbon. The fact that the NOE value for the trans methyl carbon is smaller than that for the cis methyl carbon strongly suggests that the rotation of the trans methyl group is faster than the cis methyl group. To reduce the spin–rotation contribution, T_1's were measured at low temperatures (fig. 1 and table 2). The ratio of the T_1 of the trans methyl carbon to the cis methyl becomes greater as the temperature is decreased. NOE factors at -33.1°C show that the carbons of the two methyl groups are relaxed predominantly by the dipole–dipole mechanism. Thus at temperatures below -33.1°C, a discussion about the T_1 values can be made by taking account of this mechanism only. The correlation times τ_c can be calculated from the observed T_1 values by the well known equation:

$$\frac{1}{T_1} = \sum_i \frac{\gamma_i^2 \gamma_C^2}{N_i/\rho_i} \tau_c,$$

where r is the internuclear distance between the proton and the carbon to be considered, which is calculated from the already known bond distances and bond angles of formamide and dimethylamine [9]. The correlation time τ_c can be related to the rate of the methyl rotation and self-diffusion constants in accordance with Woessner's equation (2) [7],

$$\tau_c = \frac{1}{4} \left(\frac{3 \cos^2 \theta - 1}{6D_\perp + R} + \frac{3 \sin^2 \theta \cos^2 \theta}{5D_\perp + D_\parallel + R} \right)$$

$$+ \frac{3}{4} \frac{\sin^4 \theta}{2D_\perp + 4D_\parallel + R},$$

since in DMF there takes place an approximately prolate symmetric top motion at low temperatures [8]. When the axes of the self-diffusion tensor of DMF are set as in the literature [8] (fig. 2), $D_\perp \equiv D_y$ and $D_\parallel \equiv D_x$ in the temperature range from -30°C to -58°C. Therefore, $R = \frac{3}{2} k(k$: the rate of rotation of
the methyl group) and θ is the angle between the principal diffusion axis and the N–Me bond. We estimate the angle (ϕ) between the principal diffusion axis and the amide N–CO bond to be in the range from 42° to 49° at low temperatures [8]. Thus θ is in the ranges shown below:

- $\theta = 5°-12°$ for cis methyl,
- $\theta = 103°-96°$ for trans methyl.

Using the self-diffusion constants estimated from Wallach's results [8], the rotational rate constants of cis and trans methyl groups in DMF at low temperatures (−30.6°C to −57.6°C) can be calculated from eq. (2). The results are given in table 2 and the Arrhenius plots for the methyl rotations are shown in fig. 3. In the calculation at every ϕ and temperature, the rotational rate of the trans methyl group was found to be more rapid than that of the cis methyl group. The activation energies obtained for the methyl rotations are as follows:

- $E_A = 3.9 ± 0.3$ kcal/mole for cis methyl,
- $E_A = 2.7 ± 0.6$ kcal/mole for trans methyl.

The activation energies remain almost the same when the calculations are made with $\phi = 42°-49°$. Thus it can be safely said that the rotation of the cis methyl group is more strongly hindered than that of the trans methyl in liquid DMF, although some ambiguity in ϕ makes the rate constant data rather scattered in the Arrhenius plots, and the errors obtained in rotational barriers are somewhat large. The rotational barriers of the two methyl groups in DMF have not been reported until now. The activation energies obtained in this work seem reasonable, since the barriers to rotation of the methyl groups in dimethylamine and trimethylamine were reported to be 3.6 and 4.4 kcal/mole by infrared [10] and microwave [11] spectroscopic studies, respectively. The higher rotational barrier in the cis methyl group than that in the trans methyl is unexpected, since, from a simple steric hindrance point of view, the rotation of the trans methyl group is considered to be more restricted by the carbonyl oxygen than that of the cis methyl by the formyl hydrogen. It will be worthwhile studying the reason for this interesting difference in the rotational barriers of the two methyl groups in N,N-dimethylformamide in the future.

References