Ethylene C–H Bond Activation by Neutral Mn$_2$O$_5$ Clusters under Visible Light Irradiation

Shi Yin and Elliot R. Bernstein*

Department of Chemistry, NSF ERC for Extreme Ultraviolet Science and Technology, Colorado State University, Fort Collins, Colorado 80523, United States

Supporting Information

ABSTRACT: A photo excitation fast flow reactor coupled with a single-photon ionization (118 nm, 10.5 eV) time-of-flight mass spectrometry (TOFMS) instrument is used to investigate reactions of neutral Mn$_2$O$_5$ clusters with C$_2$H$_4$ under visible (532 nm) light irradiation. Association products Mn$_2$O$_5$(C$_2$H$_4$)$_n$ and Mn$_3$O$_6$(C$_2$H$_4$)$_n$ are observed without irradiation. Under light irradiation, the Mn$_2$O$_5$(C$_2$H$_4$)$_n$ TOFMS feature decreases, and a new species, Mn$_2$O$_5$H$_2$, is observed. This light-activated reaction suggests that the visible radiation can induce the chemistry, Mn$_2$O$_5$ + C$_2$H$_4$ + hv(532 nm) → Mn$_2$O$_5$H$_2$ + C$_2$H$_2$. High barriers (0.67 and 0.59 eV) are obtained on the ground-state potential energy surface (PES); the reaction is barrierless and thermodynamically favorable on the first excited-state PES, as performed by time-dependent density functional theory calculations. The calculational and experimental results suggest that Mn$_2$O$_5$-like structures on manganese oxide surfaces are the appropriate active catalytic sites for visible light photocatalysis of ethylene dehydrogenation.

Interaction of the C–H bond of a small hydrocarbon molecule with a bare transition-metal neutral atom is the simplest model for one of the most fundamental and important catalytic steps in a wide range of catalytic reactions. Gas-phase reactions of ethylene with bare transition-metal atoms, such as Y, Zr, and Nb, have been investigated through a number of experiments. In these reactions, C–H bond activation products, including C–H insertion and H$_2$-elimination products, are found to be the common products. Ethylene reactions over different single-crystal metal surfaces are also widely studied; the general goal of these studies is elucidation of the elementary reaction paths for ethylene dehydrogenation. An ideal approach for probing and understanding the “active sites” on the surface of a catalyst at a strictly molecular/atomic level is the study of “isolated” gas-phase clusters; such systems are generated in a nonperturbing environment; thus, their structure and activity can be readily identified both experimentally and theoretically. Manganese oxides represent an interesting class of compounds with important technological applications in catalysis. Our recent attention toward manganese oxide clusters is due to the emerging use of manganese oxides in biomedical, photocatalysis, and supercapacitor applications; this material is additionally relatively inexpensive, nontoxic, and naturally abundant. Manganese oxide clusters have thereby been the subject of a limited number of theoretical and experimental investigations in recent years. Mn$_2$O$_5$ is suggested to be a potential light-harvesting application material, and successful application of manganese oxides to the photocatalytic degradation of various dyes and textile manufacturing effluents under visible light have been reported. The photoinduced reactions of gas-phase metal (gold and silver) clusters have also been reported recently. To the best of our knowledge, however, the visible light photocatalytic reaction of gas-phase neutral manganese oxide species has not been reported.

To study the potential photocatalytic application of manganese oxide for C–H bond activation, and to understand the possible reaction mechanism at a molecular level, we present in this Letter the first study of visible light photocatalytic C–H bond activation of ethylene over neutral Mn$_2$O$_5$ clusters at room temperature. We employ a newly constructed photoexcitation fast flow reactor system coupled with single-photon ionization (SPI). This latter technique has proved to be reliable for detecting distributions and reactivities of neutral clusters without dissociation or fragmentation. To demonstrate this reaction and determine its possible mechanisms, density functional theory (DFT) and time-dependent (TD-DFT) calculations are performed to investigate the activity of Mn$_2$O$_5$ clusters toward ethylene C–H bond activation on their ground- and first excited-state potential energy surfaces (PES). Active sites and details of the reaction mechanism are obtained; we propose related condensed phase, atomic/molecular level, and catalytic processes for dehydrogenation of ethylene over manganese oxide under visible light irradiation.

The experimental setup for laser ablation employed in this work has been described previously in detail. A new photoexcitation fast flow reactor system is constructed to investigate reactions under visible light irradiation. Mn$_2$O$_5$ clusters are generated in a laser ablation source; manganese
plasma, ablated from a manganese foil disk, reacts with oxygen seeded in the helium (5% O₂/He) expansion gas. The expansion gas is pulsed into the vacuum by a supersonic nozzle (R. M. Jordan, Co.) with a backing pressure of typically 75 psi. Generated MnₙOₙ clusters react with reactant gas (C₂H₄) in a fast flow quartz reactor (i.d. 6.8 mm × 68 mm), which is directly coupled to the cluster generation channel (i.d. 1.8 mm × 19 mm). A 10 Hz, focused, 532 nm Nd³⁺:YAG laser (Nd³⁺ yttrium aluminum garnet) with ~6 mJ/pulse energy is used for the laser ablation. The other 10 Hz, defocused, 532 nm Nd³⁺:YAG laser with ~25 mJ per pulse (~5 mJ/cm²) energy is used for the laser light irradiation dispersed over the quartz reactor. The pressure in the fast flow reactor can be estimated ~14 Torr for the reaction.³⁸ Reactants and products are thermalized to 300–400 K by collision during the reaction.³⁹ An electric field downstream of the reactor removes any residual ions from the molecular beam. The beam of neutral reactants and products is skimmed into a differentially pumped chamber and ionized by a separated vacuum ultraviolet laser beam (118 nm, 10.5 eV/photon). After the near threshold ionization, photoions are detected by a time-of-flight mass spectrometer.

Calculations of the structural parameters for neutral MnₙOₙ clusters and the reactions of C₂H₄ and O₃ with Mn₂O₅ (reactive) and Mn₃O₇ (unreactive) clusters are performed employing DFT. The hybrid B3LYP exchange–correlation functional and a 6-311+G(d) basis set are used. Choice of the B3LYP/6-311+G(d) method with moderate computational cost has been tested to provide reasonable results in previous studies on manganese oxide clusters;²³–²⁴ this approach yields good results for the interpretation of vibrational spectra of manganese oxides.²¹,⁴⁶ Binding energies

Figure 1. Reactions of neutral MnₙOₙ clusters with C₂H₄ with and without 532 nm light irradiation: (a, d) no reaction gas, (b, e) C₂H₄, and (c, f) C₂H₄ with 532 nm radiation in a fast flow reactor. Products MnₙOₙ(C₂H₄)ₓ are labeled as m, n and m, n, C₂H₄, respectively. See text for details.
between neutral MnₙOₙ and reactants are calculated at different typical association geometries to obtain the lowest-energy structures. DFT and TD-DFT calculations are performed to explore the ground- and first excited-state PESs for the reactions Mn₂O₅/Mn₃O₇ + C₂H₄ → Mn₂O₅H₂/Mn₃O₇H₂ + C₂H₂, involving geometry optimizations of the reactants, intermediates, transition states, and products. Vibrational frequency calculations are further performed to confirm the global minima and transition states, which have zero and one imaginary frequency, respectively. The relative energies (given in electronvolts) are corrected for zero point energy (ZPE) contributions. Additionally, intrinsic reaction coordinate (IRC) calculations are carried out to determine if an estimated transition state connects two appropriate local minima along the reaction pathway. Binding energies are calculated for a few species employing the basis set superposition error (BSSE) counterpoise correction; these corrections are found to be insignificant at the present level of theory. Reaction mechanisms for the observed chemical reactions are determined employing the above procedures.

Figure 1a shows the distribution of neutral manganese oxide clusters within the mass range of m/z = 180–240. The MnₙO₂m and MnₙO₂m+1 series are found to be the most stable neutral cluster species for O₂ concentrations in the range 1–10% in the expansion gas. Mass spectra generated from the reaction of Mn₂O₅ clusters with C₂H₄ are presented in Figure 1b. Association product Mn₂O₅C₂H₄ is observed for C₂H₄ used as the reactant gas, indicating Mn₂O₅ clusters are able to adsorb single molecules of C₂H₄. The calculation result suggests the binding energy (E_b) of Mn₂O₅ with C₂H₄ is 0.48 eV, which is smaller than the binding energy of C₂H₄ with some bare metal atoms (Pd, 1.30 eV; Nb, 0.79 eV; and Pt, 0.74 eV). Under 532 nm laser light irradiation, the signal intensity of Mn₂O₅(C₂H₄) decreases to about one-half of its original (no radiation) value. However, a new mass peak Mn₂O₅H₂ is observed. The intensity of Mn₂O₅H₂ does not increase when the light irradiation laser energy is higher than 25 W cm⁻².

Figure 2. Potential energy surface profiles of ground and excited states for reactions (a) Mn₂O₅ + C₂H₄ → Mn₂O₅H₂ + C₂H₂ and (b) Mn₃O₇ + C₂H₄ → Mn₃O₇H₂ + C₂H₂. Energies are in electronvolts and relative to the initial reactant energy of Mn₂O₅ + C₂H₄ and Mn₃O₇ + C₂H₄, respectively. Energy levels are calculated at the B3LYP/6-311+G(d) level. The spin multiplicity (M) is listed as Mn₂O₅. See text for details.
mJ per pulse. This experiment result suggests the likely reaction, \(\text{Mn}_2\text{O}_5 + \text{C}_2\text{H}_4 + \text{hv}(532 \text{ nm}) \rightarrow \text{Mn}_2\text{O}_4\text{H}_2 + \text{C}_2\text{H}_2 \).

The potential energy surface of ground (Q0) and first quintet excited states (Q1) for the reaction \(\text{Mn}_2\text{O}_5 + \text{C}_2\text{H}_4 \rightarrow \text{Mn}_2\text{O}_4\text{H}_2 + \text{C}_2\text{H}_2 \) are studied at the B3LYP/6-311+G(d) level by DFT and TD-DFT calculations (Figure 2a), respectively. The \(\text{Mn}_2\text{O}_5 \) cluster contains two bridge-bonded oxygen \((\text{O}_b)\), three terminal bonded oxygen \((\text{O}_t)\), and two manganese atoms. \(\text{Mn}_1 \) bonds to one \(\text{O}_t \) atom, and \(\text{Mn}_2 \) bonds to two \(\text{O}_t \) atoms. On the Q0 potential energy surface (shown in Figure 2a, black line), the reaction starts with an exothermic addition of \(\text{C}_2\text{H}_2 \) to \(\text{Mn}_1 \), forming \(\text{Mn}_2\text{O}_5\)C2H4 (intermediate G1) with 0.48 eV adsorption energy. Two H atoms transfer from \(\text{C}_2\text{H}_4 \) to \(\text{O}_t \) atoms on \(\text{Mn}_1 \) and \(\text{Mn}_2 \) step by step (through transition states G1/G2 and G2/G3), leading to the formation of an OH moiety on each Mn center (intermediate G3). The Q0 PES possesses a significantly high overall reaction barrier (ORB, 0.67 eV) for the reaction. This ORB is determined for the transformation of intermediate G1 to intermediate G2 through transition state G1/G2, during which step the first H atom from \(\text{C}_2\text{H}_4 \) transfers to \(\text{Mn}_2\text{O}_5 \). Evaporation of the \(\text{C}_2\text{H}_2 \) moiety from intermediate G3 leads to the formation of products \(\text{Mn}_2\text{O}_4\text{H}_2 + \text{C}_2\text{H}_2 \) (P1), whose energy is 1.1 eV lower than that of the reactants \(\text{Mn}_2\text{O}_5 + \text{C}_2\text{H}_4 \) of the entrance channel. The positive high ORB (0.67 eV) indicates that the reaction \(\text{Mn}_2\text{O}_5 + \text{C}_2\text{H}_4 \rightarrow \text{Mn}_2\text{O}_4\text{H}_2 + \text{C}_2\text{H}_2 \) cannot occur on the ground-state PES at room temperature. This calculation result is in good agreement with the experimental observation presented in Figure 1b: without 532 nm irradiation of the reactants, only a stable association product \(\text{Mn}_2\text{O}_5\)C2H4 is observed.

The Q0 – Q1 vertical excitation energy of \(\text{Mn}_2\text{O}_5 \) (1.14 eV, as calculated by TD-DFT) is lower than the 532 nm photon energy (2.33 eV), which suggests the ground-state \(\text{Mn}_2\text{O}_5 \) can absorb a 532 nm photon and be excited to its first quintet excited state. On the first excited-state (Q1) PES, reaction is found to be thermodynamically favorable (–2.36 and –0.62 eV) for generation of excited-state products P2 and P2′, as shown in Figure 2a (blue line). This result suggests a reasonable mechanism for the observed light irradiation experimental spectra shown in Figure 1c. When 532 nm laser light irradiates the fast flow reactor, the signal intensity of \(\text{Mn}_2\text{O}_5\)C2H4 decreases, and a new mass peak \(\text{Mn}_2\text{O}_5\)C2H4 is excited by 532 nm radiation; the 2.33 eV (absorbed photon energy) excess energy in the excited \(\text{Mn}_2\text{O}_5\)C2H4* is sufficient to overcome reaction barriers on the first excited-state (Q1) PES. Products \(\text{Mn}_2\text{O}_4\text{H}_2 \) (P2) then are formed, following the reaction path shown in Figure 2a.

Other possible mechanisms (reaction coordinates) may also exist for the reaction \(\text{Mn}_2\text{O}_5 + \text{C}_2\text{H}_4 \rightarrow \text{Mn}_2\text{O}_4\text{H}_2 + \text{C}_2\text{H}_2 \) under visible light irradiation. For example, both the reaction of excited \(\text{Mn}_2\text{O}_5 \) (absorbing a 532 nm photon) with \(\text{C}_2\text{H}_4 \) and the reaction of excited association product \(\text{Mn}_2\text{O}_5\)C2H4* (absorbing a 532 nm photon) are possible reaction channels by which to generate products \(\text{Mn}_2\text{O}_4\text{H}_2 \) and \(\text{C}_2\text{H}_2 \) on the ground-state PES (Q0) through conical intersections between the first excited- and ground-state potential energy surfaces. The latter possibility would be similar to the published (essential) mechanism for \(\text{H}_2\text{O} \) oxidation by neutral \(\text{Ti}_2\text{O}_5 \) clusters under visible light irradiation. Due to the possibility of collisional cooling in the reaction cell, not all excited-state clusters \(\text{Mn}_2\text{O}_5\)C2H4* must generate products \(\text{Mn}_2\text{O}_4\text{H}_2 \) and \(\text{C}_2\text{H}_2 \). Under these conditions, \(\text{Mn}_2\text{O}_5 \) and \(\text{C}_2\text{H}_2 \) or \(\text{Mn}_2\text{O}_5\)C2H4 are both potential nonreactive outcomes. The real reaction is a complex process. Only the one possible mechanism is discussed here in detail, as shown in Figure 2a. The point is that the dehydrogenation of \(\text{C}_2\text{H}_4 \) on \(\text{Mn}_2\text{O}_5 \) clusters (\(\text{Mn}_2\text{O}_5 + \text{C}_2\text{H}_4 \rightarrow \text{Mn}_2\text{O}_4\text{H}_2 + \text{C}_2\text{H}_2 \)) cannot occur on the ground-state PES at room temperature, but the dehydrogenation is favorable through the first excited-state PES under visible light irradiation (532 nm). In other words, \(\text{Mn}_2\text{O}_5 \) is a size-dependent photocatalytic manganese oxide cluster site for the \(\text{C}_2\text{H}_4 \) dehydrogenation under visible light irradiation.

Both \(\text{Mn}_2\text{O}_4 \) and \(\text{Mn}_2\text{O}_5 \) clusters have high reactivity for \(\text{CO} \) oxidation, so the \(\text{Mn}_2\text{O}_5 \) is selected as a comparison species to study the photocatalytic reactivity of other manganese oxide clusters. Association products \(\text{Mn}_2\text{O}_4\text{H}_2 \) and \(\text{Mn}_2\text{O}_5\)C2H4 are observed (Figure 1e). The experimental results presented in Figure 1f demonstrate that the association products \(\text{Mn}_2\text{O}_4\text{H}_2 \) and \(\text{Mn}_2\text{O}_5\)C2H4 do not change under the visible light irradiation. To understand why these latter clusters are not photocatalytically active, the PESs of the ground (Q0) and first excited (Q1) octet states are calculated for the reaction \(\text{Mn}_2\text{O}_5 + \text{C}_2\text{H}_4 \rightarrow \text{Mn}_2\text{O}_4\text{H}_2 + \text{C}_2\text{H}_2 \) and are presented in Figure 2b. On the ground-state PES, significant ORB of 0.90 eV (transition state G4/G5) and 1.35 eV (transition state G5/G6) and 1.30 eV (transition state G5/G7) are determined for the reaction paths to produce P3 and P4, respectively. The origin – Q0 vertical excitation energy of \(\text{Mn}_2\text{O}_5 \) (1.23 eV), as calculated by TD-DFT, is lower than the 532 nm photon energy (2.33 eV). The calculated absorption range (blue line) for \(\text{Mn}_2\text{O}_5 \) cluster is from about 350 nm (3.5 eV) to 1000 nm (1.2 eV), and for the \(\text{Mn}_2\text{O}_4\) cluster is from about 400 nm (3.1 eV) to 900 nm (1.4 eV) (see calculated optical absorption of \(\text{Mn}_2\text{O}_4 \) and \(\text{Mn}_2\text{O}_5 \) clusters, Figure S1 in Supporting Information). These results suggest that both \(\text{Mn}_2\text{O}_4 \) and \(\text{Mn}_2\text{O}_5 \) clusters can be excited by absorbing 532 nm visible light. A high ORB of transition state E4/E5 (2.48

Figure 3. DFT optimized structures for ground- and first excited-state 5Mn$_2$O$_5$(C$_2$H$_4$) and 8Mn$_3$O$_7$(C$_2$H$_4$). For each cluster, the lowest-energy structure with bond lengths (in angstroms) and spin multiplicity (M: 5Mn$_{n}$O$_{5}$) are listed.

Figure 3. DFT optimized structures for ground- and first excited-state 5Mn$_2$O$_5$(C$_2$H$_4$) and 8Mn$_3$O$_7$(C$_2$H$_4$). For each cluster, the lowest-energy structure with bond lengths (in angstroms) and spin multiplicity (M: 5Mn$_{n}$O$_{5}$) are listed.

carbon atoms of C$_2$H$_4$ connect with Mn$_I$ atom of Mn$_2$O$_5$ and Mn$_II$ through ethylene π-orbitals. The theoretically derived structure of these mixed organic/inorganic clusters have the following characteristics: the Mn$_C$ bond length (2.38 Å) for excited-state 5Mn$_2$O$_5$(C$_2$H$_4$)* is 0.14 Å shorter than that (2.52 Å) of ground-state 5Mn$_2$O$_5$(C$_2$H$_4$); the terminal Mn$_O$ bond length (1.59 Å) of excited-state 5Mn$_2$O$_5$(C$_2$H$_4$)* is the same as that of ground-state 5Mn$_2$O$_5$(C$_2$H$_4$); the Mn$_C$ bond length (2.50 Å) of excited-state 8Mn$_3$O$_7$(C$_2$H$_4$)* is 0.08 Å shorter than that of ground-state 8Mn$_3$O$_7$(C$_2$H$_4$) (2.58 Å); and the terminal Mn$_O$ bond length (1.66 Å) of excited-state 8Mn$_3$O$_7$(C$_2$H$_4$)* is 0.08 Å longer than that (1.58 Å) of ground-state 8Mn$_3$O$_7$(C$_2$H$_4$). The longer Mn$_C$ and terminal Mn$_O$ bond lengths of 8Mn$_3$O$_7$(C$_2$H$_4$)*, compared to that of 5Mn$_2$O$_5$(C$_2$H$_4$)*, are possible reasons for the high ORB of the first H atom transfer from C$_2$H$_4$ to O$_n$ on 5Mn$_2$O$_5$(C$_2$H$_4$)* (transition state E4/E5, 2.48 eV shown in Figure 2b). Recall that the ORB for 5Mn$_2$O$_5$(C$_2$H$_4$)* (transition state E1/E2) is ~1.43 eV (Figure 2a). The highest occupied molecular orbitals (HOMOs), which are singly occupied, and the lowest unoccupied molecular orbitals (LUMOs) for ground-state 5Mn$_2$O$_5$ and 8Mn$_3$O$_7$-neutral clusters are also studied (shown in Figure S2). The HOMOs for 5Mn$_2$O$_5$ and 8Mn$_3$O$_7$ are composed of nonbonding d atomic orbitals of Mn$_I$ (IV, oxidation state) and their bonded O$_p$ atomic orbitals, and the LUMOs, which are localized on the other Mn atoms, are also composed of nonbonding d atomic orbitals of Mn and p atomic orbitals of their bonded O$_p$ atoms. This molecular orbital description suggests that the ground to first excited-state excitations of both 5Mn$_2$O$_5$ and 8Mn$_3$O$_7$ arise from a similar change in electron densities. The Mn$_I$ atoms in both clusters have oxidation states of IV, the Mn atom in 5Mn$_2$O$_5$ has an oxidation state of VI, and each of the two Mn$_II$ atoms of 8Mn$_3$O$_7$ has an oxidation state of V, as indicated in Figure S2. These similar HOMO (singly occupied) and LUMO distribution characteristics for 5Mn$_2$O$_5$ and 8Mn$_3$O$_7$ are likely reasons for their similar vertical excitation energies (5Mn$_2$O$_5$: 1.14 eV; 8Mn$_3$O$_7$: 1.23 eV). Nonetheless, this orbital similarity does not account for their different reactivities toward ethylene.

For a practical photocatalytic dehydrogenation of ethylene, the catalyst must be recycled. To generate a complete catalytic cycle for ethylene dehydrogenation on manganese oxide clusters, different Mn$_{5}$O$_5$ regenerative reactions from Mn$_2$O$_5$H$_2$ to Mn$_3$O$_7$ are calculated to explore the potential regeneration of the photocatalytically active manganese oxide cluster (5Mn$_{n}$O$_{5}$): 5Mn$_2$O$_5$H$_2$ → 5Mn$_2$O$_5$ + H$_2$; 5Mn$_2$O$_5$H$_2$ + NO$_2$ → 5Mn$_2$O$_5$ + H$_2$O + NO; 5Mn$_2$O$_5$H$_2$ + N$_2$O → 5Mn$_2$O$_5$ + H$_2$O + N$_2$; 5Mn$_2$O$_5$H$_2$ + O$_3$ → 5Mn$_2$O$_5$ + H$_2$O + O$_2$.

As the first step of the potential energy profile shown in Figure S3, the reaction of Mn$_2$O$_5$H$_2$ with singlet and triplet O$_3$ to generate Mn$_2$O$_5$H$_2$ + O$_2$ is a barrierless process. After that, the calculational results show that no positive ORBs (only negative ORBs of −1.31 and −1.36 eV, referenced to the initial reactants 5Mn$_2$O$_5$H$_2$ + 1O$_3$) exist for the dehydrogenation of Mn$_2$O$_5$H$_2$. The crossing of spin triplet and singlet potential energy surfaces (spin conversion31) is obtained; this surface crossing suggests that both initial reactants 5Mn$_2$O$_5$H$_2$ + 1O$_3$ and 5Mn$_2$O$_5$H$_2$ + 3O$_3$ can form products 5Mn$_2$O$_5$ + H$_2$O + O$_2$ through the spin conversion point. These calculation results imply that ozone is a possible oxidant for regeneration of the photocatalytically reactive Mn$_3$O$_5$ clusters for ethylene dehydrogenation. Reactions of ozone with some initial manganese oxide clusters, such as Mn$_2$O$_4$ and Mn$_2$O$_5$, are also calculated.

5Mn$_2$O$_5$ + 1O$_3$ → 5Mn$_2$O$_5$ + 3O$_2$; 5Mn$_2$O$_5$ + 3O$_3$ → 5Mn$_2$O$_5$ + 3O$_2$; 5Mn$_2$O$_5$ + 1O$_3$ → 5Mn$_2$O$_5$ + 3O$_2$; 5Mn$_2$O$_5$ + 3O$_3$ → 5Mn$_2$O$_5$ + 3O$_2$.

These results suggest Mn$_2$O$_5$ and Mn$_3$O$_7$ are possibly oxidized by ozone; therefore, during the process of regeneration of the photocatalytically reactive Mn$_3$O$_5$ from Mn$_2$O$_5$H$_2$ by ozone, the generation of Mn$_2$O$_4$$_5$ from Mn$_2$O$_5$$_5$ oxidized by ozone must be considered carefully in practical catalytic processes. Reactive clusters in the gas phase can be seen as a good model system for the active moieties (possibly defects) that exist on a catalyst surface. Thereby, a catalytic reaction of ethylene dehydrogenation and Mn$_2$O$_5$ moiety regeneration by O$_3$ on manganese oxide surfaces are proposed and presented schematically in Figure 4. This proposal is offered based on experimental and calculational results presented in Figures 1, 2, and S3. Our proposed mechanism indicates that the C$_2$H$_4$ molecule adsorbs on the Mn$_I$ site of the Mn$_2$O$_5$ moiety, which binds to only one terminal oxygen atom, and H atoms transfer to the active O$_p$ atoms on Mn$_II$ and the adjacent Mn$_II$ site step by step under visible light irradiation. C$_2$H$_4$ molecules can be formed and desorbed leaving Mn$_I$ sites on a catalytic
manganese oxide surface. Ozone is selected here as a possible oxidant for regeneration of the Mn₃O₅ moiety. O₃ molecules can oxidize the Mn₆ sites to generate HO-Mn₆-O sites. H₂O molecules are formed through H transfers and desorbed, leaving the photocatalytic manganese oxide surface unchanged. Ethylene dehydrogenation is thereby possible over the manganese oxide surface under visible light irradiation, and the catalyst surface can be regenerated and reactivated by ozone. Note that ozone is able to react with ethylene to form an ozonide to then cleave the C=C bond of ethylene; therefore, ozone is only a possible (not the best and ideal) oxidant selected to reactivate the manganese oxide catalyst surface. The catalytic process (schematically depicted in Figure 4) is helpful for the understanding of the heterogeneous photocatalytic reaction mechanism of ethylene dehydrogenation on condensed-phase catalyst surfaces; this catalyst regeneration reaction is best performed in the absence of both C₂H₄ and C₂H₂.

In summary, reactions of neutral Mn₉O₅ (m = 2, n = 5, 7; m = 3, n = 6–8) clusters with C₂H₄ under visible (532 nm) light irradiation are investigated employing a photoexcited fast reactor system. Association products Mn₉O₇(C₂H₄) and Mn₉O₅(C₂H₄) are observed for reactions of C₂H₄ without light irradiation. With 532 nm laser light irradiation, the Mn₉O₇(C₂H₄) feature decreases in intensity, and a new product Mn₉O₅H₂ is observed. This activation suggests that visible (532 nm) light irradiation can induce chemistry for Mn₉O₅ with C₂H₄: Mn₉O₅ + C₂H₄ + hv(532 nm) → Mn₉O₅C₂H₄ → Mn₉O₅H₂ + C₂H₂. DFT and TD-DFT calculations are performed to explore the ground- and first excited-state PESs for the reactions Mn₉O₅/Mn₉O₇ + C₂H₄ → Mn₉O₅H₂/Mn₉O₇H₂ + C₂H₂ and derive mechanisms for the reactions. High barriers (0.67 and 0.59 eV) are obtained on the ground-state PES for the Mn₉O₇ + C₂H₄ reaction, while the reaction is thermodynamically favorable on the first excited-state PES. The Mn₆ atoms of reactive (catalytic) Mn₉O₅ clusters are the active sites for holding C₂H₄ molecules during the C₂H₄ dehydrogenation processes under visible light (532 nm) irradiation. The next essential step is the first H atom transfer to the terminal O₁ on Mn₆; this H atom transfer has the highest barrier on the excited-state PES. The ORB of this first H atom transfer step appears to be an important factor with regard to Mn₉O₅ cluster photoreactivity with C₂H₄ and is suggested to be related to bond lengths of Mn₆C and Mn₉O₅. The reaction mechanisms explored by calculations are in good agreement with the experimental results and suggest that Mn₃O₅ moieties on a manganese oxide surface are active catalytic sites for visible light photocatalysis of C₃H₄.

REFERENCES

ACKNOWLEDGMENTS

This work is supported by a grant from the U.S. Air Force Office of Scientific Research (AFOSR) through Grant FA9550-10-1-0454, the National Science Foundation (NSF) ERC for Extreme Ultraviolet Science and Technology under NSF Award 0310717, and the National Science Foundation through XSEDE resources under Grant TG-CHE110083.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpclett.6b00541.

Optical spectra of Mn₃O₅ and Mn₃O₇ clusters using TDDFT calculations; DFT orbital plots showing the HOMO and LUMO of neutral Mn₃O₅ and Mn₃O₇ clusters; and potential energy surface profile of ground-state reaction Mn₉O₅H₂ + O₃. (PDF)

AUTHOR INFORMATION

Corresponding Author

E-mail: erb@lamar.colostate.edu.

Notes

The authors declare no competing financial interest.